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Statistics of shear-induced rearrangements in a two-dimensional model foam
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Under steady shear, a foam relaxes stress through intermittent rearrangements of bubbles accompanied by
sudden drops in the stored elastic energy. We use a simple model of foam that incorporates both elasticity and
dissipation to study the statistics of bubble rearrangements in terms of energy drops, the number of nearest
neighbor changes, and the rate of neighbor-switching (T1) events. We do this for a two-dimensional system as
a function of system size, shear rate, dissipation mechanism, and gas area fraction. We find that for dry foams,
there is a well-defined quasistatic limit at low shear rates where localized rearrangements occur at a constant
rate per unit strain, independent of both system size and dissipation mechanism. These results are in good
qualitative agreement with experiments on two-dimensional and three-dimensional foams. In contrast, we find
for progessively wetter foams that the event size distribution broadens into a power law that is cut off only by
system size. This is consistent with criticality at the melting transition.@S1063-651X~99!06610-6#

PACS number~s!: 83.70.Hq, 83.50.Ax, 82.70.Kj, 82.70.Rr
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I. INTRODUCTION

A foam is a disordered collection of densely-packed po
disperse gas bubbles in a relatively small volume of liq
@1–3#. Foams have a rich rheological behavior; they act l
elastic solids for small deformations but they flow like vi
cous liquids at large applied shear stress@4#. The stress is
relaxed by discrete rearrangement events that occur inter
tently as the foam is sheared. Three-dimensional foams
opaque, which makes it difficult to observe these bub
movements directly. However, measurements@5,6# by
diffusing-wave spectroscopy of three-dimensional foa
subjected to a constant shear rate suggest that the numb
bubbles involved in the rearrangements is small, of the or
of four bubbles. Bubble rearrangements can be observed
rectly by fluorescence microscopy in two-dimensional foa
found in insoluble monolayers at the air-water interface.
study of shear in such foams@7# also revealed no large-sca
rearrangements.

While analytical theories for the response to appl
steady shear may be constructed for periodic foams@4#, only
simulation approaches are possible for disordered foams.
wasaki’s@8# vertex model was the first to incorporate dis
pative dynamics. It applies to a two-dimensional foam in
limit in which the area fraction of gas is unity~a dry foam!.
Bubble edges are approximated by straight line segm
that meet at a vertex that represents a Plateau border.
equations of motion for the vertices are solved by balanc
viscous dissipation due to shear flow within the borders
surface tension forces. At low shear rates, the elastic en
of the foam, which is associated with the total length of t
bubble segments, shows intermittent energy drops with a
tribution of event rate vs. energy release that follows a br
power law, consistent with self-organized criticality. The r
arrangements associated with the largest events consi
cooperative motions of bubbles that extend over much of
system.

Weaire and co-workers@9–11# were the first to develop a
PRE 601063-651X/99/60~4!/4385~12!/$15.00
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model appropriate to a disordered wet foam. The model d
not include dissipation. The effect of shear is studied in
quasistatic limit; that is, the system is allowed to relax to
equilibrium configuration after each of a series of infinite
mal shear steps. The size of rearrangements is measure
the number of changes in nearest-neighbor contacts. For
foams, the average event size is small, inconsistent wit
picture of self-organized criticality. However, as the liqu
content increases, the event-size distribution broadens,
the largest events involving many bubbles. Although the s
tistics are limited, this is consistent with a picture of critica
ity at the point where the foam loses its rigidity.

The first model capable of treating wet, disordered foa
at nonzero shear rate was proposed by Durian@12#. His
model pictures the foam as consisting of spherical bubb
that can overlap. Two pairwise-additive interactions betwe
neighboring bubbles are considered, a harmonic repul
force that mimics the effect of bubble deformation and
force proportional to the velocity difference between neig
boring bubbles that accounts for the viscous drag. He fo
@13# that the probability density of energy drops followed
power law, with a cutoff at very high energy events. T
largest event observed consisted of only a few bubb
changing neighbors. This is inconsistent with a picture
self-organized criticality, although the effect of the liqu
content on the topology statistics was not examined.

Most recently, Jianget al. @14# have employed a large-Q
Potts model to examine sheared foams. In this lattice mo
bubbles are represented by domains of like spin, and the
boundaries are the links between regions of different sp
Each spin merely acts as a label for a particular bubble,
the surface energy arises only at the boundaries where
spins differ. The evolution of the foam is studied by Mon
Carlo dynamics with a Hamiltonian consisting of thre
terms: the coupling energy between neighboring spins at
boundaries of the bubbles; an energy penalty for change
the areas of the bubbles, which inhibits coarsening of
foam; and a shear term that biases the probability of a s
4385 © 1999 The American Physical Society
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4386 PRE 60SHUBHA TEWARI et al.
reassignment in the strain direction. The spatial distribut
of T1 events was examined and no system-wide rearra
ments were observed. Nevertheless, Jianget al. found a
power-law distribution of energy changes. They also fou
that the number of events per unit strain displayed a str
shear-rate dependence, suggesting that a quasi-static
does not exist.

These four simulation approaches thus offer conflict
pictures as to~1! the existence of a quasistatic limit,~2!
whether or not rearrangement dynamics at low shear r
are a form of self-organized criticality, and~3! whether or
not the melting of foams with increasing liquid content is
more usual form of criticality. One possible reason for th
disagreement is differences in the treatment of dissipat
and hence in the treatment of thedynamicsof the rearrange-
ments. In principle, the only accurate way in which to i
clude dissipation in a sheared foam is to solve for the Sto
flow in the liquid films and Plateau borders. This approa
has been adopted by Li, Zhou, and Pozrikidis@15#, but so far
it has only been applied to periodic foams. The statistics
rearrangement events are fundamentally different in perio
and disordered foams; in sheared periodic foams, all
bubbles rearrange simultaneously at periodic intervals, w
in a disordered foam, the rearrangements can be local
and intermittent. Nonetheless, the Stokes-flow approac
the only one that can be used as a benchmark for more
plified models.

In order to gain a better understanding of the origin of
discrepancies between the various models, as well as
tween the models and experiments, we report here a sys
atic study of the properties of a sheared foam using Duria
model. We begin by reviewing his model and discussing
numerical implementation using two different forms of d
sipation. After confirming that there are no significa
system-size effects for dry samples, we examine the sh
rate dependence and establish the existence of a true q
static limit for the distribution and rate of energy drops a
topology changes. This limit is shown to be independen
the dissipation mechanism for foams of different gas fr
tions. Finally, we examine dramatic changes in the beha
of these quantities as the liquid content is tuned toward
melting point.

II. BUBBLE MODEL

Durian’s model@12,13# is based on the wet-foam limit
where the bubbles are spherical and just touch. The foa
described entirely in terms of the bubble radii$Ri% and the
time-dependent positions of the bubble centers$rW i%. The de-
tails of the microscopic interactions at the level of soap fil
and vertices are subsumed into two pairwise additive in
actions between bubbles, which arise when the distance
tween bubble centers is less than the sum of their radii.
first, a repulsion that originates in the energy cost to dis
bubbles, is modeled by the compression of two springs
series with individual spring constants that scale with
Laplace pressuress/Ri , wheres is the liquid-gas surface
tension andRi is the bubble radius. Bubbles that do n
overlap are assumed not to interact. The repulsive force
bubblei due to bubblej is then
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FW i j
r 5ki j @~Ri1Rj !2urW i2rW j u# r̂ i j , ~1!

where r̂ i j is the unit vector pointing from the center o
bubble j to the center of bubblei, andki j 5F0 /(Ri1Rj ) is
the effective spring constant, withF0's^R&. The second
interaction is the viscous dissipation due to the flow of liqu
in the films. It, too, is assumed to be pairwise additive and
modeled by the simplest form of drag, where the force
proportional to the velocity difference between overlappi
bubbles. The viscous force on bubblei due to its neighborj
is

FW i j
v 52b~vW i2vW j !, ~2!

where the constantb is proportional to the viscosity of the
liquid, and is assumed to be the same for all bubble nei
bors.

The net force on each bubble sums to zero, since ine
effects are negligible in this system. Summing over tho
bubbles j that touch bubblei, the equation of motion for
bubblei is

(
j

~vW i2vW j !5
F0

b (
j

F 1

urW i2rW j u
2

1

Ri1Rj
G ~rW i2rW j !1

FW i
a

b
,

~3!

whereFW i
a is an externally applied force, arising, for instanc

from interactions with moving walls.
Durian @12,13# employed a further simplification of this

model, in which the viscous dissipation is taken into acco
in a mean-field manner by taking the velocity of each bub
relative to an average linear shear profile. In this case,
total drag force on bubblei due to all of itsNi overlapping
neighbors is

FW i
v52bNi~vW i2ġyi x̂!. ~4!

In the numerical simulations reported here we use both
mean-field model of dissipation as well as the approximat
represented by Eq.~2!, which we call the local dissipation
model. In the latter, at each integration time step the velo
of a bubble is measured with respect to the average of
velocities of itsNi overlapping neighbors, so that the tot
drag force on bubblei is

FW i
v52bNiS vW i2

1

Ni
(
j 51

Ni

vW j D . ~5!

For very largeNi , this reduces to Eq.~4!; otherwise, it al-
lows for fluctuations. One aim of our study is to establish t
sensitivity of the results to the specific form of dissipati
used, Eqs.~4! or ~5!.

In two dimensions, the area fraction of gas bubbles,f,
can be defined by the total bubble area(pRi

2 per system
area. Because the bubbles are constrained to remain cir
and their interactions are approximated as pairwise-addi
@16#, the model necessarily breaks down for very dry foam
In fact, bubble radii can even be chosen so thatf exceeds
one. In a real foam, of course, this is prevented by the div
gence of the osmotic pressure.
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III. NUMERICAL METHOD

All the results reported here are based on simulations
two-dimensional version of Durian’s model. We use Eq.~3!
to study a two-dimensional foam periodic in thex direction
and trapped between parallel plates in they direction.
Bubbles that touch the top and bottom plates are fixed
them, and the top plate is moved at a constant velocity in
x direction.~The system can also be sheared with a cons
force instead of a constant velocity, but that case will not
discussed here.! Thus bubbles are divided into two categori
— ‘‘boundary’’ bubbles, which have velocities that are d
termined by the motion of the plates, and ‘‘interior’’ bubble
whose velocities must be determined from the equation
motion.

The equation of motion Eq.~3! can be written in the form

M ~$r%!•$v%5$Fr%/b1$Fa%/b, ~6!

where$v‰ is a vector containing all the velocity componen
of all of the bubbles,$v0

x ,v0
y ,v1

x ,v1
y , . . . %, $Fr% is a vector of

all of the repulsive bubble-bubble forces, and$Fa% contains
all the forces exerted by the walls. The matrixM depends on
the instantaneous positions of the bubbles. The 232 block
submatrixMi j is a unit matrix1 if the distinct bubblesi and
j overlap, and0 if they do not overlap. On the diagona
Mii 521Ni , whereNi is the number of overlapping neigh
bors of bubble i. Equation ~6! is of the form
A(r ,t)•(dr /dt)5 f (r ,t), which we solve for the bubble po
sitionsr with the routineDDRIV3 @17#. DDRIV3 has the ability
to solve differential equations in which the left hand side
multiplied by an arbitrary time-dependent matrix. Furthe
more, it allows all matrix algebra to be performed by ext
nal routines, allowing us to take advantage of the spa
nature ofM . We use theSPARSKIT2 @17# library for sparse
matrix solutions, and the Runge-Kutta algorithm with a va
able time step determined by the error tolerance to integ
the differential equations.

The only relevant dynamical scale in this problem is
by the characteristic relaxation time arising from the comp
ing mechanisms for elastic storage and viscous dissipa
td5b^R&/F0. This is the characteristic time scale for th
duration of bubble rearrangements driven by a drop in to
elastic energy. Without loss of generality we set this to un
in the simulation. In these units, the dimensionless shear
ġ is the capillary number.

To introduce polydispersity, the bubble radii are drawn
random from a flat distribution of variable width; in all th
results reported here, the bubble radii vary from 0.2 to
times the average bubble radius. We note that the size d
bution in experimental systems is closer to a trunca
Gaussian with the maximum size equal to twice the aver
radius. The truncated Gaussian distribution arises natur
from the coarsening process@18,19#. We tested the sensitiv
ity of our results to the bubble distribution by doing one r
with bubbles drawn from a triangular distribution, and fou
that the shape of the distribution had no significant effe
Similarly, variation of the width of a triangular distributio
has been shown to have no influence on the linear viscoe
ticity @13#. Note that it is important to include polydispersi
because a monodisperse system will crystallize under sh
especially in two dimensions.
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In all of our runs, the system is first equilibrated with a
bubbles treated as interior bubbles, and with a repulsive
teraction between the bubbles and the top and bottom pl
so that bubbles cannot penetrate the plates. The bubbles
touch the top and bottom plates are then converted to bou
ary bubbles. The top plate is moved at a constant velo
and data collection begins after any initial transients
away. The total strain covered by a given run ranges from
to 100. In addition to recording quantitative measures of
system, we also run movies of the sheared foam in orde
observe visually how the flow changes as a function of sh
rate, area fraction and other parameters@20#.

IV. QUANTITIES MEASURED

Before showing results, we discuss the various quanti
extracted during a run. Under a small applied shear str
bubbles in a real foam distort; as the shear strain increa
the structure can become unstable and they may thus
range their relative positions. In the bubble model, the d
tortion of bubbles is measured globally by the total elas
energy stored in all the springs connecting overlapp
bubbles:

E5(
1

2
ki j @~Ri1Rj !2urW i2rW j u#2. ~7!

Under steady shear, the elastic energy rises as bubbles d
~overlap! and then drops as bubbles rearrange. Thus, the
elastic energy fluctuates around some average value.
scale of the energy is set by the elastic interaction and i
order F0^R& per bubble, wherêR& is the average bubble
radius.

Figure 1~a! shows a plot of the total elastic energy as
function of strain for a system of 144 bubbles at area fract
f51.0 driven at a constant shear rate ofġ51023. Similar
plots for stress vs strain are shown in Refs.@12,13#. Note the
precipitous energy drops,DE, due to bubble rearrangement
In the literature, these energy drops are often referred to
avalanches. Since the term ‘‘avalanche’’ tends to imply
existence of self-organized criticality, we employ the mo
neutral but less elegant term ‘‘energy drop.’’ The time inte
val between energy drops is much larger than the duratio
a single event. This is also illustrated in Fig. 1~b!, which
shows the magnitude of energy drops that occur as the
tem is strained. (DE is scaled by the average energy p
bubbleEb , which has been computed by averaging the el
tic energy over the entire duration of a run and dividing
the total number of bubbles in the system,Nbub .! These
recurring precipitous rearrangements represent the only
for the foam to relax stress: there is no mechanism involv
a gradual energy release, as illustrated in Fig. 1~a!. Note that
we compute only the total elastic energy of the system;
cause events can be localized and intermittent, the ela
energy may be dropping in one region of the sample a
rising in other regions. This would limit the size of the e
ergy drop measured.

While useful for building intuition, the distribution of en
ergy drops does not yield direct information about bub
rearrangements. Therefore, we also measure the numberN of
bubbles that experience a change in overlapping neigh
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4388 PRE 60SHUBHA TEWARI et al.
during an energy drop. In calculating distributions we e
clude events in which two bubbles simply move apart
together; thus the smallest event isN53. A typical sequence
of configurations before, during, and after an event is sho
in the first three frames of Fig. 2. In this energy drop t
magnitude of the drop and the number of bubbles t
change neighbors are close to the average. In the second
third frame of the sequence, we have marked the bubbles
changed neighbors since the beginning of the energy d
~shown in the first frame!. As the system is strained, mor
bubbles change neighbors. For the particular energy d
chosen, roughly one-sixth of the bubbles eventually cha
overlapping neighbors. The fourth frame shows the final c
figuration of bubbles~colored gray! superimposed on the ini
tial configuration at the start of the energy drop~colored
black!. Most of the bubble motions that lead to this averag
sized energy drop are rather subtle shifts; there are no t

FIG. 1. Elastic energy and rearrangements vs strain for a 1
bubble system, with gas~area! fractionf51, being slowly sheared

at rate ġ51023. The top plot~a! shows the total elastic energ
stored in the ‘‘springs’’ of overlapping bubbles. Plot~b! shows the
size of the energy drops that occur as the system is sheared.
that the duration of an energy drop is very short compared to
time between energy drops at this low shear rate. Plot~c! shows the
corresponding fraction of bubbles that experience a change in o
lapping neighbors during each precipitous energy-drop event.
bottom plot~d! marks the mid-point of eachT1 event, where two
bubbles begin to intrude between two others; these have no d
correspondence to the energy drop events seen in~a! and ~b!. The
behavior of all the properties shown here indicates that flow
accomplished inhomogeneously and intermittently by sudden r
rangements.
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logical rearrangements. A large energy drop, from the tai
the distribution, is shown in Fig. 3. Again, the first thre
frames show the configurations at the beginning, middle
end of the drop, with the bubbles that change overlapp
neighbors marked in gray. The fourth frame shows the
tensive rearrangements that occur from the beginning to
end of the drop. The configuration shown is the final o
and the short segments are the tracks made by the cente
the bubbles during the energy drop.

Typically, larger drops involve larger numbers of bubble
Figure 1~c! depictsN during each energy drop in the sam
run as in Figs. 1~a! and 1~b!. ~Here,N is normalized by the
total number of bubbles in the system,Nbub .) The correla-
tion between energy drops and the number of bubbles
volved is shown by a scatter plot of these quantities in Fig
for a 900-bubble system strained from 0 to 10. We see
indeed there is a strong correlation between these two m
sures of the size of an event. Larger drops in energy invo
larger numbers of bubbles and are therefore spatially m
extended. The correlation is particularly good at the lar
event end. There is more variability for midsize and sm
events — a large range of energy drops corresponds to
same small number of rearranging bubbles, suggesting
typical rearrangements involve only a few bubbles.

Besides counting statistics for energy drops and chan
in number of bubble overlaps, another direct measure
bubble rearrangements is the number ofT1 events, i.e., of

4-

ote
e

r-
e

ct

s
r-

FIG. 2. Sequence of snapshots showing the nature of bu
rearrangements during an energy drop of average size in a

bubble system atf51.0 sheared at a rate ofġ51023. The magni-
tude of the drop (DE/Eb52.61) and the fraction of bubbles tha
change overlapping neighbors (N/Nbub50.18) are both close to
average. The first three frames show the configurations of bub
at the start, middle and end of the energy drop, respectively. As
event proceeds, more and more bubbles change overlapping n
bors, as shown by the gray bubbles. The fourth frame shows
final configuration with bubbles in light gray superimposed on
initial configuration with bubbles in black. Most of the bubble m
tions involve subtle shifts of bubble positions; there are no to
logical rearrangements in this event. Note that although this ev
appears to nucleate at the top, in general the events appear
domly throughout the sample.
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topology changes of the first kind@3#. For a perfectly dry
two-dimensional foam consisting of thin films, these are s
to occur when a bubble edge shrinks to zero, such th
common vertex is shared by four bubbles, two moving ap
and two moving together. These events were the only pr
erty used by Dennin and Knobler@7# to characterize the re
sponse of their monolayer foam to shear because they w
unable to measure changes in the energy. While the tim
which aT1 event occurs is well defined in a dry foam, it
somewhat ambiguous for a wet foam because there can b
exchange of nearest neighbors without a common poin
contact. Moreover, while the number of bubbles involved
a T1 event is four by definition, large clusters of bubbles c

FIG. 3. Sequence of snapshots showing bubble rearrangem
during a large energy drop in a 144-bubble system atf51.0 and

ġ51023. The magnitude of the drop (DE/Eb513.18) and the frac-
tion of bubbles that change overlapping neighbors (N/Nbub

50.44) both fall in the upper tails of the distributions. The fir
three frames show the configurations at the beginning, middle
end of the energy drop; the gray bubbles have changed overlap
neighbors since the start of the drop. The fourth frame shows
final configuration along with the tracks made by the centers of
bubbles during the event. We did not use the same scheme as
fourth frame of Fig. 2 to show the rearrangements because
bubble motions were too extensive in this case.

FIG. 4. The size of energy drops as a function of the numbe
bubbles that concurrently change overlapping neighbors during

energy drop, for a 900-bubble system atf51.0 driven at ġ
51023. This indicates that the fraction of bubbles that change ov
lapping neighbors during an energy drop increases with the siz
the energy drop.
d
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rearrange, with some of the interior bubbles being involv
in two or threeT1 events simultaneously. It is then muc
harder to assign an exact time to aT1 event.

To make contact with the monolayer experiments,
may defineT1 events within the bubble model as follow
First we broaden the definition of ‘‘nearest neighbors’’
also include bubbles that do not necessarily overlap, but
are nonetheless so close such thaturW i2rW j u,a(Ri1Rj ),
wherea.1 is a suitably chosen factor that may depend
f. We then say that aT1 event begins when two neare
neighbors move apart, and we say that it ends when a
nearest neighbor pair intrudes between them; the time
which the event occurs is taken as the midpoint in this
quence. This definition is illustrated in the time sequence
a T1 event shown in Fig. 5. While the duration of an actu
T1 event in a dry foam is instantaneous, the duration wit
the bubble model may vary greatly. Furthermore, the m
point in the sequence does not necessarily coincide with
exact moment the switching occurs. In many instance
takes a long time after two bubbles separate for the rem
ing pair to come into contact. To compare with our oth
measures of rearrangement, we depict in Fig. 1~d! the num-
ber ofT1 events as a function of strain for the same run as
Figs. 1~a!–1~c!. There appears to be some correlation b
tween the largest energy drops and instances in which m
T1 events occur simultaneously. However, there are m
moreT1 events than energy drops. This is because manyT1
events can occur when a large cluster of bubbles rearran
and because our definition also includes topology chan
that cause anincreasein the total elastic energy.

We can examine the consequences of our definition o
T1 event by studying the distribution of the number of re
rangement events as a function of their total duration in u
of the strain. This is done for both energy drops andT1
events, as shown in Figs. 6~a! and 6~b!. The duration of an
energy drop is taken as the difference in strain betwee
decrease in the elastic energy and the next increase.

nts

d
ing
e
e
the
he

f
he

r-
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FIG. 5. A sequence of snapshots showing aT1 event in a wet

foam atf50.85 as the system is strained atġ51023. During the
event, the black pair of bubbles moves together and the gray
moves apart.
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4390 PRE 60SHUBHA TEWARI et al.
evident from the duration distribution for energy drops, F
6~a!, that most energy drops occur over a relatively sh
strain scale. In units of time, the longest events are com
rable to a hundred times the characteristic time scale in
problem (td51 in our simulations!. As shown in Fig. 6~c!,
there is a good correlation between the number of bub
that change overlapping neighbors and the duration of
event; the more bubbles involved in the event, the longe
lasts. The distribution forT1 events, shown in Fig. 6~b!, has
a qualitatively similar shape to the distribution of energ
drop events, but exhibits a slightly more rapid decrease
both fast and slow events. However, the scale on whichT1
events occur is an order of magnitude larger than the c
acteristic duration of the energy drops. By examining
bubble motions we see that the largest energy drops are
sociated with manyT1 events, but the difference in stra
scales makes it difficult to demonstrate an exact correla
between the number of overlap changes and the numbe
T1’s. In counting theT1 events, we include only events th

FIG. 6. The probability distribution for the duration of~a!
energy-drop rearrangement events and~b! T1 events, for a 144-

bubble system atf51 driven at ġ51023. Note that the typical
duration of T1 events is significantly longer than that of ener
drops.~c! Correlation plot of the fraction of bubbles involved in a
energy drop vs the duration of the energy drop.
.
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have a total strain duration of less than 2. Figure 6~b! shows
that we have included all theT1 events for this run.

V. SIMULATION RESULTS

For a given system size, strain rate, dissipation mec
nism and gas fraction, we now collect statistics on the f
lowing measures of bubble dynamics:~1! The probability
distribution P(DE) for energy drops of sizeDE; ~2! the
probability distributionP(N) for the number of bubblesN
that change overlapping neighbors during an energy-d
event; and~3! the scaled event count for both energy dro
andT1 events,S(T1) andS(DE), both defined as the num
ber of events per bubble per unit strain. With the except
of the 900-bubble system, for which only two runs we
carried out, we have performed at least three different r
with different initial conditions for the same sets of param
eters. We find that the measured quantities are insensitiv
the initial conditions.

A. System size

We first address the important issue of the finite size
the simulation sample. This is done for dry foams,f51.0,
driven at a slow strain rate,ġ51023. The results for four
system sizes,Nbub536, 144, 324, and 900, are shown in Fi
7. In these runs, the systems were strained up to 80, 80
and 10, respectively. The top plot shows the energy-d
distribution scaled byEb , the average energy per bubble.
shows that energy drops vary greatly in size over the cou
of a single run. The general features of this distribution ha
been reported earlier@13#. There is a power-law region with
an exponent of20.7 that extends over several decades
DE/Eb , followed by a sharp cutoff that occurs above a ch
acteristic event size. Such a distribution has a well-defin
average energy drop, which is near the cutoff betweenEb
and 3Eb for the systems shown here. The slight deviati
from power-law behavior for smallDE was absent in the
earlier simulations@13#, which did not exclude two-bubble
events, and which had a different roundoff error. Also,
seen earlier@13#, the two largest systems, with 324 and 9
bubbles, respectively, have nearly identical distributio
This has two important implications; namely, that the sha
cutoff of the power-law distribution is not a finite-size effec
and that the system does not exhibit self-organized critic
ity.

The presence of a characteristic energy-drop size can
corroborated by examining the number of bubbles that p
ticipate in rearrangements for the same set of runs, whic
given in the middle plot, Fig. 7~b!. This quantity has not
been studied previously within the bubble model. We p
the probability distributionP(N) of the number of bubblesN
that change overlapping neighbors during a rearrangem
The distribution decreases monotonically with a sharp cu
at the large-event end. This indicates that most of the re
rangements are local and involve only a few bubbles. Fig
7~b! shows that as the system size increases, the lar
events represent a smaller fraction of the total number
bubbles. Indeed, the tail of the distribution extends to sma
and smaller values ofN/Nbub with no signs of saturation a
the system sizeNbub increases, indicating diminishing finit
size effects.
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We next look at the system-size dependence of ev
counts,S(T1) andS(DE), for the number ofT1 events and
energy drops per bubble per unit strain. This is shown in
bottom plot, Fig. 7~c!, for the same runs as in Figs. 7~a! and
7~b!. We find thatS(DE) decreases very slightly with in
creasing system size, but saturates for the largest syst
The results forS(T1) show a stronger system-size depe
dence, increasing slightly withNbub . This could be due to
the fact that bubbles on the top and bottom boundaries of
system are fixed, which lowers the number of possibleT1
events per bubble. As the system size grows, the boun
bubbles represent a smaller fraction of the system so
event count increases towards its bulk value.

FIG. 7. Effect of system size atf51.0 andġ51023. ~a! Prob-
ability density distribution of energy dropsDE scaled byEb , the
average energy per bubble for each run. There is a power-law
gion ~the straight line has a slope of20.7! followed by a sharp
cutoff. The cutoff depends only weakly on the system size a
converges for the larger systems.~b! Probability distribution of the
number of bubbles that change overlapping neighbors during a
arrangement. The tails of the distribution extend to smaller fracti
of the total number of bubbles in the system as the system
increases, showing that the events are spatially localized.~c! Event
count forT1 events~solid circles! and energy drops~open squares!.
Error bars forS(T1) in this and subsequent figures represent
variations found in independent runs~at least three, with the excep
tion of the 900-bubble system for which only two runs were carr
out! with the same parameters but different initial condition
Where no error bar is indicated the variation is smaller than the
of the symbol. The number of energy drops per bubble decreas
the system size increases, reaching the same value for the
bubble and 900-bubble systems. There are, however, moreT1 re-
arrangement events per bubble at the larger system size.
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In short, all of our measurements atf51.0 and ġ
51023 indicate that the rearrangement events are locali
and that there is no self-organized criticality. This agre
with observations of rearrangements in both monolayer
bulk foams.

B. Shear rate dependence

Now that size effects have been ruled out for dry foam
we may examine the influence of shearing the sample
different rates. Experiments by Gopal and Durian@6# on
three-dimensional foams show a marked change in the c
acter of the flow with increasing shear rate. At low she
rates, the flow is characterized by intermittent, jerky re
rangement events occurring at a rate proportional to
strain rate. As the shear rate increases, so that the inv
shear rate becomes comparable to the duration of a r
rangement event, the flow becomes smoother and lam
with all the bubbles gradually rearranging all the time. Th
was attributed to a dominance of viscous forces over surf
tension forces when the strain rate exceeds the yield st
divided by the duration of a rearrangement event. In mov
of our simulation runs, we also observe a crossover fr
intermittent, jerky rearrangements to smooth laminar flo
Similar smoothing has also been seen in stress vs. stra
increasing shear rates for the mean-field version of bub
dynamics@13#. This raises the question of how the statisti
of rearrangement events change with shear rate. Specific
how is the ‘‘smoothing out’’ of the flow reflected in th
statistics at high rates, and is there a quasistatic limit at
shear strain rates, in which rearrangement behavior is in
pendent of strain rate? Earlier numerical studies by Bol
and Weaire@10# were restricted, by construction, to the qu
sistatic limit. Okuzono and Kawasaki@8# examined nonzero
shear rates, but focused only on establishing the low sh
rate limit. Recently, Jiang and co-workers found a stro
dependence of theT1 event count on shear rate@14#. They
found that the number ofT1 events per bubble per strain
S(T1), decreases sharply with strain rate with no evidence
a quasistatic limit.

Our results for rearrangement behavior vs strain rate
collected in Fig. 8 for a 144-bubble system atf51.0. The
top plot for the probability distribution of energy drops ind
cates that there is no gross change inP(DE) with shear rate,
even though our movies show a smoothing with less frequ
energy drops. However, there is some suppression of s
energy drops with an accompanying increase at large en
drops, as reflected in a somewhat smaller power-law ex
nent and larger cutoff at high values ofDE/Eb . It is not
apparent fromP(DE) vs DE/Eb , but we find that the aver-
age energy drop̂DE& and the average energy per bubbleEb
both increase with shear rate, and that^DE& increases more
rapidly. The reason whyEb increases with shear rate is, o
course, that viscous forces become more important than e
tic forces and lead to increasing deformation~or in our
model, overlaps! of bubbles. The net result is that there a
fewer, relatively larger, rearrangements at high strain rat

The tendency that small events are suppressed with
creasing shear rates is also borne out by the distribution
the number of bubbles that change neighbors during an
ergy drop, as shown in Fig. 8~b!. Note that unlike the previ-
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4392 PRE 60SHUBHA TEWARI et al.
ous curves,P(N) is plotted here on a linear scale. Two sy
tematic trends emerge with increasingġ: there are relatively
fewer small events, i.e.,P(N) decreases significantly a
small N/Nbub , and the tail extends to slightly highe
N/Nbub . For ġ51021 the distribution is fairly flat, suggest
ing that no one event size is dominant and there are num
ous large events of the order of the system size. This s
gests that at this shear rate the system no longer rel
stress by intermittent rearrangements, but by continu
flow, as confirmed by our movies of the runs@20#. The trend
in P(N) is seen in larger systems as well. For the 900-bub
system we also find that as the shear rate increases
1025 to 1023, the distribution flattens and extends to high
values ofN. The average number of rearranging bonds
creases with shear rate, consistent with the picture of m
bubbles in motion as the system becomes more liquidl
We cannot, however, probe the system at very high sh
rates. Data above a shear rate of about 1 cannot be tru
because of the nature of the model used. At high rate

FIG. 8. Effect of shear rate for a 144-bubble system atf51.0.
~a! There is no systematic change in the power-law region of
probability distribution of energy drops. The cutoff moves towar

larger event sizes asġ increases.~b! A stronger trend is apparent i

the probability distribution of rearranging bubbles. Asġ increases,

the distribution flattens. For the highest rate,ġ50.1, the distribu-
tion is fairly flat, suggesting that no one event size is dominant
the largest events are of the order of the system size.~c! Both the
event counts forT1 events and energy drops decrease as the sy

is sheared faster. TheT1 event counts atġ51023 and 1022 are the
same within error. Note that a well-defined quasistatic limit is a

proached asġ→0.
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strain the viscous term dominates and the elastic forces
not strong enough to prevent clumping of bubbles. This
actually an artifact of the assumption that only overlapp
bubbles interact viscously; such clumping does not oc
until much higher strain rates in the mean-field version
dynamics. Another reason why we do not study shear ra
higher than unity is because we do not allow bubble brea

under flow~recall thatġ is the capillary number!.
The gradual smoothing with increasing shear rate is m

apparent in Fig. 8~c!, where we see that the event counts
T1 events and energy drops both decrease with increa
strain rate. For theT1 events, the decrease is slight, and
primarily due to the fact that the event duration becom
even longer. The decrease is more dramatic for the ene
drop events. With increasing strain rate, the average en
drop increases and the rate of energy drops decreases.

Let us now reexamine the behavior of all quantities
Fig. 8, focusing on behavior at low shear strain rates. N
that all quantities appear to approach a reasonably w

defined ‘‘quasistatic’’ limit insensitive to the value ofġ. We

thus have the following picture. For smallġ, the time be-
tween rearrangements is typically much longer than the
ration of a rearrangement, implying there is adequate t
for the system to relax stress. As the shear rate increa
bubbles are constantly in motion and cannot fully rearran
into local-minimum-energy configurations. Therefore, t
viscous interactions dominate, and the system flows like
ordinary liquid.

C. Mean-field vs local dissipation

In the bubble model at higher strain rates, the behav
was seen to depend on the form of dissipation: clumping
local dissipation, Eq.~5!, as opposed to no clumping fo
mean-field dissipation, Eq.~4!. In this section we will inves-
tigate whether dissipation affects the low-strain-rate beha

as well. If there truly exists a quasistatic limit asġ→0, as
suggested by the plots in the previous section, then the f
of dissipation should have no influence. This need not oc
since once a rearrangement starts it proceeds with fi
speed according to dynamics set by a competition betw
surface tension and dissipation forces. For example, it is c
ceivable that the mean-field dynamics might discourage
mushrooming of a tiny shift in bubble position into a larg
avalanche, whereas local dynamics might not. Another
portant issue is that differences in mean-field vs local dis
pation could be relevant to true physical differences betw
bulk foams and Langmuir monolayers at an air/water int
face. For three-dimensional foams, the shear is transm
through the sample via bubble-bubble interactions, so
dissipation might be better captured by the local dissipat
model. In contrast, for two-dimensional Langmuir mon
layer foams the subphase imposes shear on the monola
and the dissipation might therefore be closer to that ca
lated with the mean-field model.

To investigate the influence of mean-field vs local dyna
ics, we can simply compare avalanche statistics. This is d
in Fig. 9 for 144-bubble systems at four different area fra
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tions, all sheared atġ51023. The top plot shows results fo
the energy-drop distribution,P(DE), with light ~heavy!
curves for local~mean-field! dissipation. There is no signifi
cant difference seen between the two choices of dissipa
dynamics. This is also true of the spatial extent of the re
rangements, as seen in the middle plot for the probab
distribution P(N) of rearranging bubbles. The bottom pl
for the rate of energy-drop andT1 events also shows little
significant difference between mean-field and local dyna
ics. The only distinction is a slightly greater rate ofT1
events in the mean-field case. This reflects the differenc
duration ofT1 events within the two models; we find thatT1
events tend to last longer within the local dissipation mod
Since we do not countT1 events that last longer than a stra
of 2, we count fewer events within the local model than t
mean-field version. Thus the differences inS(T1) may sim-
ply be due to our method of countingT1 events. Taken
together, the three plots in Fig. 9 encourage us to believe
the rearrangement dynamics predicted by the model are
bust against details of the dissipation. They also provide
ther evidence for the existence of a true quasistatic lim

FIG. 9. Effect of gas area fraction and the form of visco

dissipation for a 144-bubble system sheared atġ51023. The prob-
ability distribution of both~a! energy drops, and~b! number of
bubbles changing overlapping neighbors during an event, are g
at four area fractions:f51.0, 0.95, 0.90, and 0.85. Heavy and lig
curves are for mean-field and local versions of dissipative dyn
ics, respectively. Note that the dynamics do not influence the
havior but that the events become larger as the gas fraction
proaches the melting point,fc'0.84. Part~c! shows the event
counts forT1 events and energy drops; these are insensitive to
gas area fraction and type of dynamics.
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where the effect of strain rate isonly to set the rate of rear
rangements.

D. Gas area fraction

Finally, we turn to the issue of how the elastic charac
of a foam disappears with increasing liquid content, and
possibility of critical behavior at the melting transition. Th
principal signature of the melting, or rigidity-loss, transitio
is that the shear modulusG5 lim

t→`
s(t)/g vanishes and the

foam can no longer support a nonzero shear stress wit
flowing. In two-dimensional systems, this happens at a c
cal gas fraction corresponding to that of randomly pack
disks, fc'0.84. This has been seen in several differe
simulations, where the gas fraction was tuned to within 0
of the transition@9–11# and where it was tuned through, an
even below, the transition@12,13#. Other signatures of melt
ing are that the osmotic pressure vanishes as a power
@12,13,16# the coordination number decreases towards ab
4 as a power-law@9–13,21#, and that the time scale for stres
relaxation following an applied step-strain appears to dive
@12,13#. Here we look for signs of melting in the statistics
avalanches during slow, quasistatic flow. Within our mod
an increase in liquid content causes a decrease in the ave
overlap between neighboring bubbles. This in turn produ
a decrease in the average elastic energy of the systemEb,
and sets the scale for the average energy drop^DE& per
rearrangement. It therefore should also decrease at lowe
fractionsf.

The energy drop and size statistics of rearrangem
events for increasingly wet foams were shown already in F
9, but were discussed only in the context of mean-field
local dissipative dynamics. A clear trend emerges when
examine thef dependence specifically. In the top plot Fi
9~a! for P(DE), we see that the power-law behavior fo
small events does not change, but that the exponential cu
moves towards larger values ofDE/Eb asf→fc . Though
both^DE& andEb decrease towards zero, the latter eviden
vanishes more rapidly. This results in a broader distribut
of event sizes near the melting transition; as the system
comes more liquid, large events are more prevalent.
probability distributionP(N) for the numbers of bubbles in
volved in rearrangement events is shown in Fig. 9~b!. It dis-
plays similar trends as a function off, but not as pro-
nounced as inP(DE). Namely, the power law for smallN is
unaffected byf, but the exponential cutoff moves toward
slightly larger events asf→fc . Thus, although the scale o
energy drops increases dramatically, the number of bro
bonds only increases marginally. Note, however, that
largest events include almost all the bubbles in the syst
thus, the relatively weak dependence ofP(N) on f could be
a finite-size effect in theseNbub5144 systems, as we wil
show below.

The behavior ofS, the number of energy drops andT1
events per bubble per strain, is shown in Fig. 9~c!. As the
system becomes wetter, there is no noticeable change in
event numberS(DE) for energy drops. In contrast, if ou
definition of nearest neighbors only includes overlapp
bubbles, we find thatS(T1) decreases asf decreases. This
runs counter to expectations–bubbles in a wet foam sho
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4394 PRE 60SHUBHA TEWARI et al.
have more freedom to move and rearrange because the
ergy barrier between rearrangements is lower and the y
strain is smaller. The apparent drop arises because the bu
coordination number is much higher in a dry foam~roughly
6! than in a wet foam~roughly 4!. As a result there are mor
overlapping neighbors for each bubble in a dry foam, a
more possibilities for the occurrence ofT1 events. In the wet
foam, however, there are manyT1 events that do not satisf
the stringent starting or ending configurations because ne
boring bubbles do not overlap. It is therefore appropriate
wet foams to modify the criterion for neighbors tour i2r j u
,a(Ri1Rj ), where the proximity coefficienta is taken as
1/f. WhenT1’s are computed with this definition, we fin
no significant dependence on area fraction.

The fact that the power-law region of the energy-dr
distribution is more extended at lower area fractions sugg
the possibility of a critical point as the close-packing dens
fc , is approached from above. This would imply a pu
power-law distributionP(DE) for the energy drops atfc ,
which would presumably be accompanied by a growing c
relation length, as well as the growing relaxation time o
served previously in Refs.@12,13#. Note, however, that the
distribution of the number of bubbles involved in a rea
rangement,P(N), does not depend very strongly onf for
the 144-bubble systems of Fig. 9; furthermore, the cut-of
power-law behavior is always present, no matter how clos
fc is approached. This raises the question of whether fi
system-size effects are more important at values off near
fc ~recall from Fig. 7 that there were no significant syste
size effects nearf51). To examine this, we have plotted th
dependence ofP(DE),(N) andS on system size in Fig. 10
We indeed find a strong system-size dependence inP(DE)
at f50.85 just above the melting transition, with no satu
tion at the largest size studied~900 bubbles!. This is consis-
tent with the existence of a long correlation length.

The distribution of the number of bubbles per ener
drop, P(N) also shows signs of criticality. Recall from Fig
7~b! that atf51, the tail ofP(N) was cut off at smaller and
smaller values ofN/Nbub with increasing system size atf
51. This was consistent with a short correlation leng
characteristic of localized rearrangement events. Atf
50.85, the behavior with increasingNbub is quite different,
as shown in Fig. 10~b!. The distribution falls off slightly
more rapidly withN/Nbub at larger system sizes~probably
becausef50.85 still lies abovefc), but the largest event
in the system still involve the same fractionN/Nbub'0.75 of
bubbles, indicating a correlation length that is comparable
the largest system size studied~30 bubble diameters across!.

The event counts for energy drops andT1 events for the
different system sizes atf50.85 are shown in Fig. 10~c!.
The behavior is not markedly different from that found f
the drier foam. Recall, however, that we have adjusted
definition of aT1 event by changing the proximity coeffi
cient a with area fraction, so little can be expected to
learned from this measure.

VI. DISCUSSION

We have reported the results of several different meas
of rearrangement event dynamics in a sheared foam. A c
parison of the probability distribution of energy drop
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P(DE) with the probabilty distribution of bubbles changin
neighborsP(N) shows that the size of an energy drop co
relates well with the number of bubbles involved in a re
rangement~see Fig. 4!. This is valuable because the ener
drop-distribution has been widely studied theoretically, bu
very difficult to measure experimentally. The number
bubbles involved in rearrangements, however, can be pro
with multiple light scattering techniques on thre
dimensional foams@5# and by direct visualization of two-
dimensional foams@7#. A study of the rate of occurrence o
topological changes (T1 events! provides a further link to
experiments.

In general, our results agree with experiments on thr
dimensional and two-dimensional foams. Despite its simp
ity, the bubble model appears to capture the main qualita
features of a sheared foam remarkably well. For example,
find that the size of rearrangement events is typically sma
low shear rates and at area fractions not too close tofc . This
is in accord with experiments of Gopal and Durian@5#, and
Dennin and Knobler@7#, as well as simulation results o

FIG. 10. Effect of system size atf50.85 andġ51023. ~a!
There is no change in the power-law region of the probability d
sity distribution compared with Fig. 6~a!. However, the cutoff in-
creases and there is no convergence for the largest system size~b!
Even at the largest system sizes, the largest events involve a
nificant fraction of the bubbles in the system, indicating that
events are much more spatially extended than atf51. ~c! As in
Fig. 7~c!, the number ofT1 events and energy drops show th
opposite trend. The event count for energy drops indicate that fi
size effects are more pronounced at this lower area fraction. Un
the saturation seen in Fig. 7~c!, the event number continues to dro
as the system size increases.
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Bolton and Weaire@10# and Jiang and coworkers@14#. Our
results do not agree with those of Okuzono and Kawas
@8#, however, who found power-law distributions of rea
rangement events atf51 in two dimensions.

The largest discrepancies between our results and tho
others lie in the statistics ofT1 events. We find that the
number ofT1 events per bubble per unit strain is of ord
unity and is generally insensitive to shear rate and gas
fraction. Kawasakiet al. @22# found similar results:S(T1)
50.5 and no dependence on shear rate. In the Potts-m
simulations@14#, however,S(T1) is unity at ġ51023 but
falls to about 0.01 atġ51021.

The monolayer experiments@7# yielded values ofS(T1)
'0.15, nearly an order of magnitude lower than predicted
our simulations. Durian@13# reported a number of rearrang
ment events per bubble per unit strain for simulations o
900-bubble system atġ51025 that was comparable to th
monolayer result, but he measured the number of ene
drops per bubble per unit strain,S(DE), not theT1 event
count, S(T1). Note that our energy-drop event coun
S(DE), agrees well with Durian’s earlier result.

One might guess that the discrepancy between our m
surement ofS(T1) and that of the monolayer experime
might lie in the method of analysis used to countT1 events.
Unlike the simulations, in which the number ofT1 events
can be computed from an analysis of bubble positions a
function of time, the number ofT1’s in the monolayer stud
ies was determined by repeated viewing of videotapes of
experiments and counting of the events as the foam c
reach their midpoint configuration. It seemed possible, th
that the difference between the simulation and the exp
ment was the result of a systematic undercounting of
number of the events. To check this possibility, the num
of T1’s in a simulation run was determined by observatio
of the animated bubble motions. The number of eve
missed in this unautomated counting was only 2% of
total.

We believe that the origin of the discrepancy between
T1 event rates in the simulation and the monolayer exp
ment lies in the yield strain. While the yield strain in th
model system is less than 0.2, which is consistent with
measured in three-dimensional foams, that in the monola
foams is closer to unity. Bubbles in monolayer foams c
therefore sustain very large deformations without induc
rearrangements. TheT1 event count should be inversely pr
portional to the yield strain. Thus, the ratio ofS(T1) in the
simulation toS(T1) in the experiment should equal the rat
of the yield strain in the experiment to the yield strain in t
simulation. This is exactly what we find.

One of our main results is that a quasistatic limit exi
within the bubble model. We find that the statistics of re
rangement events are independent of shear rate at low s
rates. This agrees with the monolayer experiments@7#, which
measuredT1 event counts at two different shear rates,ġ
50.003 s21 and 0.11 s21. Dennin and Knobler found no
noticeable difference in theT1 event count, despite the fac
that the shear rates studied differ by a factor of thirty.
addition, Gopal and Durian found that the event rate, nam
the number of rearrangement events per bubble per sec
in a three-dimensional foam is given by the event rate in
ki
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absence of shear plus a term proportional to the shear rat
their case, the event rate was nonzero in the absence of s
because of coarsening; we have neglected this effect in
simulations. However, we do find that the rearrangem
event rate~the product ofS and the shear rate! is simply
proportional to the shear rate at low shear rates. Thus,
perimental results in both two and three dimensions con
dict the simulation results of Jianget al. @14#, which find no
quasistatic limit, but agree with our findings.

The form of dissipation used in the bubble model is
simple dynamic friction, which does not capture the hyd
dynamics of fluid flow in the plateau borders and films in
realistic way. However, our results suggest that we may
be capturing the correct behavior at low shear rates. We
that the rearrangement event statistics are the same wh
we use mean-field or local dissipation at low shear ra
This suggests that the statistics are determined by elasti
fects rather than viscous ones at low shear rates, and tha
behavior in that limit should be independent of the form
viscous dissipation used.

Finally, our results as a function of gas area fraction i
ply that there may be a critical point at the melting transitio
as the area fraction approaches the random close-pac
fraction from above. Previous studies showed that both
shear modulus and yield stress vanish as power laws a
melting transition@10,12#, and that the stress relaxation tim
appears to diverge@12#. Here, we have shown by finite-siz
studies that there is also a correlation length, characteriz
the size of rearrangements, which grows as one approa
the melting transition. We also find that the distribution
energy drops appears to approach a pure power law in
limit.

The existence of a critical point at the melting transiti
remains to be tested experimentally. The vanishing of
shear modulus and osmotic pressure at the transition
been measured by Mason and Weitz@23# for monodisperse,
disordered emulsions, and by Saint-Jalmes and Durian
polydisperse gas-liquid foams@24#. However, these small
amplitude-strain rheological measurements could not
whether there is a diverging length scale for rearrangem
in a steadily sheared system at the melting transition. On
other hand, Gopal and Durian@5# have measured the size o
rearrangement events in a gas-liquid foam, but only at pa
ing fractions well above the melting transition. At lowe
packing fractions close to the melting transition, the liqu
drains too quickly from the foam due to gravity to perm
such measurements. Experiments under microgravity co
tions should be able to resolve whether the melting transi
is indeed a critical point.
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