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Under steady shear, a foam relaxes stress through intermittent rearrangements of bubbles accompanied by
sudden drops in the stored elastic energy. We use a simple model of foam that incorporates both elasticity and
dissipation to study the statistics of bubble rearrangements in terms of energy drops, the number of nearest
neighbor changes, and the rate of neighbor-switchirb) (events. We do this for a two-dimensional system as
a function of system size, shear rate, dissipation mechanism, and gas area fraction. We find that for dry foams,
there is a well-defined quasistatic limit at low shear rates where localized rearrangements occur at a constant
rate per unit strain, independent of both system size and dissipation mechanism. These results are in good
qualitative agreement with experiments on two-dimensional and three-dimensional foams. In contrast, we find
for progessively wetter foams that the event size distribution broadens into a power law that is cut off only by
system size. This is consistent with criticality at the melting transifi6i063-651X99)06610-4

PACS numbgs): 83.70.Hq, 83.50.Ax, 82.70.Kj, 82.70.Rr

[. INTRODUCTION model appropriate to a disordered wet foam. The model does
not include dissipation. The effect of shear is studied in the
A foam is a disordered collection of densely-packed poly-quasistatic limit; that is, the system is allowed to relax to an
disperse gas bubbles in a relatively small volume of liquidequilibrium configuration after each of a series of infinitesi-
[1-3]. Foams have a rich rheological behavior; they act likemal shear steps. The size of rearrangements is measured by
elastic solids for small deformations but they flow like vis- the number of changes in nearest-neighbor contacts. For dry
cous liguids at large applied shear str¢4f The stress is foams, the average event size is small, inconsistent with a
relaxed by discrete rearrangement events that occur intermipicture of self-organized criticality. However, as the liquid
tently as the foam is sheared. Three-dimensional foams ai@ntent increases, the event-size distribution broadens, with
opaque, which makes it difficult to observe these bubblghe largest events involving many bubbles. Although the sta-
movements directly. However, measurements6] by tistics are limited, this is consistent with a picture of critical-
diffusing-wave spectroscopy of three-dimensional foamsty at the point where the foam loses its rigidity.
subjected to a constant shear rate suggest that the number of The first model capable of treating wet, disordered foams
bubbles involved in the rearrangements is small, of the ordeat nonzero shear rate was proposed by Dufid®]. His
of four bubbles. Bubble rearrangements can be observed dinodel pictures the foam as consisting of spherical bubbles
rectly by fluorescence microscopy in two-dimensional foamghat can overlap. Two pairwise-additive interactions between
found in insoluble monolayers at the air-water interface. Aneighboring bubbles are considered, a harmonic repulsive
study of shear in such foanhg] also revealed no large-scale force that mimics the effect of bubble deformation and a
rearrangements. force proportional to the velocity difference between neigh-
While analytical theories for the response to appliedboring bubbles that accounts for the viscous drag. He found
steady shear may be constructed for periodic fophsonly  [13] that the probability density of energy drops followed a
simulation approaches are possible for disordered foams. Kgower law, with a cutoff at very high energy events. The
wasaki’s[8] vertex model was the first to incorporate dissi- largest event observed consisted of only a few bubbles
pative dynamics. It applies to a two-dimensional foam in thechanging neighbors. This is inconsistent with a picture of
limit in which the area fraction of gas is unita dry foam).  self-organized criticality, although the effect of the liquid
Bubble edges are approximated by straight line segmeniontent on the topology statistics was not examined.
that meet at a vertex that represents a Plateau border. The Most recently, Jiangt al.[14] have employed a larg@
equations of motion for the vertices are solved by balancind?otts model to examine sheared foams. In this lattice model
viscous dissipation due to shear flow within the borders bybubbles are represented by domains of like spin, and the film
surface tension forces. At low shear rates, the elastic enerdyoundaries are the links between regions of different spins.
of the foam, which is associated with the total length of theEach spin merely acts as a label for a particular bubble, and
bubble segments, shows intermittent energy drops with a dighe surface energy arises only at the boundaries where the
tribution of event rate vs. energy release that follows a broadgpins differ. The evolution of the foam is studied by Monte
power law, consistent with self-organized criticality. The re-Carlo dynamics with a Hamiltonian consisting of three
arrangements associated with the largest events consist tgfrms: the coupling energy between neighboring spins at the
cooperative motions of bubbles that extend over much of th&@oundaries of the bubbles; an energy penalty for changes in
system. the areas of the bubbles, which inhibits coarsening of the
Weaire and co-worker®—11] were the first to develop a foam; and a shear term that biases the probability of a spin
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reassignment in the streyn direction. The spat@l distribution Er =kij[(Ri+Rj)—| i_rjl]rij ’ 1)

of T1 events was examined and no system-wide rearrange-

ments were observed. Nevertheless, Jigt@l. found a \here rij is the unit vector pointing from the center of

power-law distribution of energy changes. They also foundoubblej to the center of bubble andk;=Fo/(R,+R;) is

that the number of events per unit strain displayed a stronghe effective spring constant, wity~o(R). The second

shear-rate dependence, suggesting that a quasi-static limifteraction is the viscous dissipation due to the flow of liquid

does not exist. in the films. It, too, is assumed to be pairwise additive and is
These four simulation approaches thus offer conflictingmodeled by the simplest form of drag, where the force is

pictures as to(1) the existence of a quasistatic limi2)  proportional to the velocity difference between overlapping

whether or not rearrangement dynamics at low shear ratésubbles. The viscous force on bubbldue to its neighboj

are a form of self-organized criticality, an@) whether or s

not the melting of foams with increasing liquid content is a

more usual form of criticality. One possible reason for this ﬁ;’i = _b(\7i_\7j)v 2

disagreement is differences in the treatment of dissipation,

and hence in the treatment of tHgnamicsof the rearrange- where the constartt is proportional to the viscosity of the

ments. In principle, the only accurate way in which to in- liquid, and is assumed to be the same for all bubble neigh-

clude dissipation in a sheared foam is to solve for the Stokebors.

flow in the liquid films and Plateau borders. This approach The net force on each bubble sums to zero, since inertial

has been adopted by Li, Zhou, and Pozrikidi§], but so far  effects are negligible in this system. Summing over those

it has only been applied to periodic foams. The statistics obubblesj that touch bubbld, the equation of motion for

rearrangement events are fundamentally different in periodibubblei is

and disordered foams; in sheared periodic foams, all the

bubbles rearrange simultaneously at periodic intervals, while B 1 1 R
in a disordered foam, the rearrangements can be localized > (Vi—V;)= o > T TRir |
and intermittent. Nonetheless, the Stokes-flow approach is * T ri| o 3)

the only one that can be used as a benchmark for more sim-
plified models. hereF? is an externally applied force, arising, for instance

In order to gain a better understanding of the origin of the//NErer; 1S an externally appl » ansing, ! '
discrepancies between the various models, as well as bg_om Interactions with moving walls. L .
tween the models and experiments, we report here a system Durian [12,13 employed a further simplification of this

atic study of the properties of a sheared foam using Durian’Q{OdeL in W.hiCh the viscous di.ssipation is t?"‘e” into account
model. We begin by reviewing his model and discussing ouln @ mean-field manner by taking the velocity of each bubble

numerical implementation using two different forms of dis- :e:a;[l\ée tofan averabgebglr?e;r sthealrl p:cq];”?\'l In thlls case, the
sipation. After confirming that there are no significant otal drag force on bubbledue fo all of 1tS; overlapping

system-size effects for dry samples, we examine the Sheap_aghbors IS

rate dependence and establish the existence of a true quasi-
static limit for the distribution and rate of energy drops and

topology changes. This limit is shown to be independent o . . .
the dissipation mechanism for foams of different gas frac-ﬁn the numerical simulations reported here we use both the

tions. Finally, we examine dramatic changes in the behaviopqe"’m'ﬁe'd model of dissipation as well as the approximation

of these quantities as the liquid content is tuned toward théepresented by Eq2), Wh'Ch. we ca!l th? local d|SS|pat|on.
melting point. model. In the latter, at each integration time step the velocity

of a bubble is measured with respect to the average of the
velocities of itsN; overlapping neighbors, so that the total
drag force on bubbléeis

FY/=—DbNi(Vi—7yiX). @

Il. BUBBLE MODEL

N.
. , . _ . . . . 1 1 .
Durian’s model[12,13 is based on the wet-foam limit, F}’=—bN-(v - 2 Vi)- ®)
ij=1

where the bubbles are spherical and just touch. The foam is
described entirely in terms of the bubble rafi;} and the
time-dependent positions of the bubble cen{ér}:.. The de-  For very largeN;, this reduces to Eq4); otherwise, it al-

tails of the microscopic interactions at the level of soap filmslows for fluctuations. One aim of our study is to establish the
and vertices are subsumed into two pairwise additive intersensitivity of the results to the specific form of dissipation
actions between bubbles, which arise when the distance besed, Eqs(4) or (5).

tween bubble centers is less than the sum of their radii. The In two dimensions, the area fraction of gas bubblgés,

first, a repulsion that originates in the energy cost to distortan be defined by the total bubble arEarRi2 per system
bubbles, is modeled by the compression of two springs irarea. Because the bubbles are constrained to remain circular
series with individual spring constants that scale with theand their interactions are approximated as pairwise-additive
Laplace pressures/R;, whereo is the liquid-gas surface [16], the model necessarily breaks down for very dry foams.
tension andR; is the bubble radius. Bubbles that do not In fact, bubble radii can even be chosen so thatxceeds
overlap are assumed not to interact. The repulsive force oane. In a real foam, of course, this is prevented by the diver-
bubblei due to bubblg is then gence of the osmotic pressure.
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. NUMERICAL METHOD In all of our runs, the system is first equilibrated with all
bubbles treated as interior bubbles, and with a repulsive in-

All the results reported here are based on simulations of geraction between the bubbles and the top and bottom plates
two-dimensional version of Durian’s model. We use E).  so that bubbles cannot penetrate the plates. The bubbles that
to study a two-dimensional foam periodic in thelirection  touch the top and bottom plates are then converted to bound-
and trapped between parallel plates in thedirection.  ary bubbles. The top plate is moved at a constant velocity
Bubbles that touch the top and bottom plates are fixed tand data collection begins after any initial transients die
them, and the top plate is moved at a constant velocity in thgway. The total strain covered by a given run ranges from 10
x direction. (The system can also be sheared with a constany, 100. In addition to recording quantitative measures of the
force instead of a constant velocity, but that case will not besystem, we also run movies of the sheared foam in order to
discussed hergThus bubbles are divided into two categories gpgeryve visually how the flow changes as a function of shear
— “boundary” bubbles, which have velocities that are de- rate, area fraction and other parame{@@).
termined by the motion of the plates, and “interior” bubbles,
whose velocities must be determined from the equations of
motion.

The equation of motion Ed3) can be written in the form Before showing results, we discuss the various quantities
A — ST a extracted during a run. Under a small applied shear strain,
Mrp)-{vi ={F'}/b+{F}/b, © bubbles in a real foam distort; as the shear strain increases,
where{v} is a vector containing all the velocity components the structure can become unstable and they may thus rear-
of all of the bubbles{v§,v},vi,v}, ...}, {F'} isavector of range their relative positions. In the bubble model, the dis-
all of the repulsive bubble-bubble forces, affef} contains tortion of bubbles is measured globally by the total elastic
all the forces exerted by the walls. The matixdepends on energy stored in all the springs connecting overlapping
the instantaneous positions of the bubbles. The22block ~ bubbles:
submatrixM;; is a unit matrix1 if the distinct bubbles and 1
j overlap, andO if they do not overlap. On the diagonal, N s 2
M;;=—1N;, whereN; is the number of overlapping neigh- E=2 7 kil (RiTR) Iri=ril)® ™
bors of bubble i. Equation (6) is of the form
A(r,t) - (dr/dt)=f(r,t), which we solve for the bubble po- Under steady shear, the elastic energy rises as bubbles distort
sitionsr with the routinebbriva [17]. DDRIV3 has the ability ~ (overlap and then drops as bubbles rearrange. Thus, the total
to solve differential equations in which the left hand side iselastic energy fluctuates around some average value. The
multiplied by an arbitrary time-dependent matrix. Further-scale of the energy is set by the elastic interaction and is of
more, it allows all matrix algebra to be performed by exter-order Fo(R) per bubble, wheréR) is the average bubble
nal routines, allowing us to take advantage of the sparseadius.
nature ofM. We use thespARskIT2[17] library for sparse Figure Xa) shows a plot of the total elastic energy as a
matrix solutions, and the Runge-Kutta algorithm with a vari-function of strain for a system of 144 bubbles at area fraction
able time step determined by the error tolerance to integratg=1.0 driven at a constant shear rate:)ocf: 10~ 3. Similar
the differential equations. plots for stress vs strain are shown in Ré2,13. Note the
The only relevant dynamical scale in this problem is sefprecipitous energy dropa,E, due to bubble rearrangements.
by the characteristic relaxation time arising from the competin the literature, these energy drops are often referred to as
ing mechanisms for elastic storage and viscous dissipatiomvalanches. Since the term “avalanche” tends to imply the
Ta=b(R)/F,. This is the characteristic time scale for the existence of self-organized criticality, we employ the more
duration of bubble rearrangements driven by a drop in totaheutral but less elegant term “energy drop.” The time inter-
elastic energy. Without loss of generality we set this to unityval between energy drops is much larger than the duration of
in the simulation. In these units, the dimensionless shear ratg single event. This is also illustrated in Figib)l, which
y is the capillary number. shows the magnitude of energy drops that occur as the sys-
To introduce polydispersity, the bubble radii are drawn attem is strained. AE is scaled by the average energy per
random from a flat distribution of variable width; in all the bubbleE,, which has been computed by averaging the elas-
results reported here, the bubble radii vary from 0.2 to 1.8ic energy over the entire duration of a run and dividing by
times the average bubble radius. We note that the size distrihe total number of bubbles in the systeM,,,.) These
bution in experimental systems is closer to a truncatedecurring precipitous rearrangements represent the only way
Gaussian with the maximum size equal to twice the averagéor the foam to relax stress: there is no mechanism involving
radius. The truncated Gaussian distribution arises naturallg gradual energy release, as illustrated in F{g). Note that
from the coarsening procef$8,19. We tested the sensitiv- we compute only the total elastic energy of the system; be-
ity of our results to the bubble distribution by doing one runcause events can be localized and intermittent, the elastic
with bubbles drawn from a triangular distribution, and foundenergy may be dropping in one region of the sample and
that the shape of the distribution had no significant effectrising in other regions. This would limit the size of the en-
Similarly, variation of the width of a triangular distribution ergy drop measured.
has been shown to have no influence on the linear viscoelas- While useful for building intuition, the distribution of en-
ticity [13]. Note that it is important to include polydispersity ergy drops does not yield direct information about bubble
because a monodisperse system will crystallize under sheagarrangements. Therefore, we also measure the nuxhbier
especially in two dimensions. bubbles that experience a change in overlapping neighbors

IV. QUANTITIES MEASURED
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0.0 | : " l‘ | |‘ I | “|' I ‘l ' \ ""|||| ‘ FIG. 2. Sequence of snapshots showing the nature of bubble
6 rearrangements during an energy drop of average size in a 144-
f bubble system a#= 1.0 sheared at a rate ¢f=10" 3. The magni-
N 4 tude of the drop AE/E,=2.61) and the fraction of bubbles that
T f change overlapping neighbor&N/(N,,,=0.18) are both close to
2 E average. The first three frames show the configurations of bubbles
at the start, middle and end of the energy drop, respectively. As the
00 0.5 1 1.5 2 event proceeds, more and more bubbles change overlapping neigh-

Y bors, as shown by the gray bubbles. The fourth frame shows the
final configuration with bubbles in light gray superimposed on the
FIG. 1. Elastic energy and rearrangements vs strain for a 144mjtial configuration with bubbles in black. Most of the bubble mo-

bubble system, with ga@rea fraction =1, being slowly sheared tions involve subtle shifts of bubble positions; there are no topo-
at rate y=10"3. The top plot(a) shows the total elastic energy logical rearrangements in this event. Note that although this event
stored in the “springs” of overlapping bubbles. Pld® shows the appears to nucleate at the top, in general the events appear ran-
size of the energy drops that occur as the system is sheared. Nasiemly throughout the sample.
that the duration of an energy drop is very short compared to the
time between energy drops at this low shear rate. @)athows the  logical rearrangements. A large energy drop, from the tail of
corresponding fraction of bubbles that experience a change in ovethe distribution, is shown in Fig. 3. Again, the first three
lapping neighbors during each precipitous energy-drop event. Thérames show the configurations at the beginning, middle and
bottom plot(d) marks the mid-point of eaclil event, where two end of the drop, with the bubbles that change overlapping
bubbles begin to intrude between two others; these have no direg¢ieighbors marked in gray. The fourth frame shows the ex-
correspondence to the energy drop events seéa) iand (b). The  tensive rearrangements that occur from the beginning to the
behavior of all the properties shown here indicates that flow isesnd of the drop. The configuration shown is the final one,
accomplished inhomogeneously and intermittently by sudden reamnd the short segments are the tracks made by the centers of
rangements. the bubbles during the energy drop.

Typically, larger drops involve larger numbers of bubbles.
during an energy drop. In calculating distributions we ex-Figure Xc) depictsN during each energy drop in the same
clude events in which two bubbles simply move apart orrun as in Figs. (a) and 1b). (Here,N is normalized by the
together; thus the smallest eveniNs-3. A typical sequence total number of bubbles in the systeM,,,.) The correla-
of configurations before, during, and after an event is shownion between energy drops and the number of bubbles in-
in the first three frames of Fig. 2. In this energy drop thevolved is shown by a scatter plot of these quantities in Fig. 4
magnitude of the drop and the number of bubbles thafor a 900-bubble system strained from 0 to 10. We see that
change neighbors are close to the average. In the second aindieed there is a strong correlation between these two mea-
third frame of the sequence, we have marked the bubbles thatires of the size of an event. Larger drops in energy involve
changed neighbors since the beginning of the energy drolarger numbers of bubbles and are therefore spatially more
(shown in the first frame As the system is strained, more extended. The correlation is particularly good at the large-
bubbles change neighbors. For the particular energy dropvent end. There is more variability for midsize and small
chosen, roughly one-sixth of the bubbles eventually changevents — a large range of energy drops corresponds to the
overlapping neighbors. The fourth frame shows the final consame small number of rearranging bubbles, suggesting that
figuration of bubblegcolored gray superimposed on the ini- typical rearrangements involve only a few bubbles.
tial configuration at the start of the energy drgmlored Besides counting statistics for energy drops and changes
black). Most of the bubble motions that lead to this averagein number of bubble overlaps, another direct measure of
sized energy drop are rather subtle shifts; there are no toptubble rearrangements is the numberTdf events, i.e., of
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FIG. 3. Sequence of snapshots showing bubble rearrangements FIG. 5. A sequence of snapshots showinglaevent in a wet
during a large energy drop in a 144-bubble systenpatl.0 and  foam at$=0.85 as the system is strainedyat 10 2. During the
y=10"3. The magnitude of the drop\E/E, = 13.18) and the frac- event, the black pair of bubbles moves together and the gray pair
tion of bubbles that change overlapping neighboid/Nyp moves apart.
=0.44) both fall in the upper tails of the distributions. The first
three frames show the configurations at the beginning, middle antearrange, with some of the interior bubbles being involved
end of the energy drop; the gray bubbles have changed overlappirig two or threeT1 events simultaneously. It is then much
neighbors since the start of the drop. The fourth frame shows thbarder to assign an exact time tal'a event.
final configuration along with the tracks made by the centers of the To make contact with the monolayer experiments, we
bubbles during the event. We did not use the same scheme as in theay defineT1 events within the bubble model as follows.
fourth frame of Fig. 2 to show the rearrangements because thgirst we broaden the definition of “nearest neighbors” to
bubble motions were too extensive in this case. also include bubbles that do not necessarily overlap, but that

o are nonetheless so close such thatrj|<a(R+R;),
topology changes of the first kingB]. For a perfectly dry \herea>1 is a suitably chosen factor that may depend on
two-dimensional foam consisting of thin films, these are said, \ve then say that &1 event begins when two nearest
to occur when a bubble edge shrinks to zero, such that geighhors move apart, and we say that it ends when a new
common vertex is shared by four bubbles, two moving aparkearest neighbor pair intrudes between them; the time at
and two moving together. These events were the only propghich the event occurs is taken as the midpoint in this se-
erty used by Dennin and Knoblgr] to characterize the re- 4 ,ence. This definition is illustrated in the time sequence of
sponse of their monolayer foam to shear because they Wt eyent shown in Fig. 5. While the duration of an actual
unable to measure changes in the energy. While the time &l eyent in a dry foam is instantaneous, the duration within

which aT1 event occurs is well defined in a dry foam, it is e pubble model may vary greatly. Furthermore, the mid-
somewhat ambiguous for a wet foam because there can be 8fint in the sequence does not necessarily coincide with the

exchange of nearest neighbors without a common point Ofyact moment the switching occurs. In many instances it

contact. Moreover, while the number of bubbles involved ingyes 4 Jong time after two bubbles separate for the remain-
aT1 eventis four by definition, large clusters of bubbles CaNing pair to come into contact. To compare with our other

measures of rearrangement, we depict in Fig) the num-

10° F ber of T1 events as a function of strain for the same run as in
L Figs. {a)—1(c). There appears to be some correlation be-
10* | tween the largest energy drops and instances in which many
AE | T1 events occur simultaneously. However, there are many
1081 moreT1 events than energy drops. This is because nfdny
| events can occur when a large cluster of bubbles rearranges,
e and because our definition also includes topology changes

0 that cause aincreasein the total elastic energy.

We can examine the consequences of our definition of a

FIG. 4. The size of energy drops as a function of the number ofl 1 event by studying the distribution of the number of rear-

bubbles that concurrently change overlapping neighbors during theangement events as a function of their total duration in units
energy drop, for a 900-bubble system @t=1.0 driven aty  Of the strain. This is done for both energy drops art
=103, This indicates that the fraction of bubbles that change overevents, as shown in Figs(e and @b). The duration of an
lapping neighbors during an energy drop increases with the size aggnergy drop is taken as the difference in strain between a
the energy drop. decrease in the elastic energy and the next increase. It is
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12 have a total strain duration of less than 2. Figufie) 8hows
10 that we have included all th€l events for this run.

NAE V. SIMULATION RESULTS

For a given system size, strain rate, dissipation mecha-
nism and gas fraction, we now collect statistics on the fol-
“ lowing measures of bubble dynamiog) The probability
LI L ! distribution P(AE) for energy drops of size\E; (2) the
0 0.025 0.050 0.075 0.100 probability distributionP(N) for the number of bubblesl
that change overlapping neighbors during an energy-drop
event; and3) the scaled event count for both energy drops
andT1 eventsS(T1) andS(AE), both defined as the num-

15 ber of events per bubble per unit strain. With the exception
of the 900-bubble system, for which only two runs were
carried out, we have performed at least three different runs
Nty with different initial conditions for the same sets of param-
eters. We find that the measured quantities are insensitive to
the initial conditions.

S D A~ N X

Ay

|
0 Ll A. System size
Ay We first address the important issue of the finite size of
the simulation sample. This is done for dry foandss 1.0,

driven at a slow strain ratey=10"3. The results for four
system sized\,,,= 36, 144, 324, and 900, are shown in Fig.
7. In these runs, the systems were strained up to 80, 80, 31,
and 10, respectively. The top plot shows the energy-drop
distribution scaled by, , the average energy per bubble. It
shows that energy drops vary greatly in size over the course
of a single run. The general features of this distribution have
0.01 . . been reported earli¢f.3]. There is a power-law region with
0.0001 0.001 0.01 0.1 an exponent of—0.7 that extends over several decades in
Ay AE/E,, followed by a sharp cutoff that occurs above a char-
acteristic event size. Such a distribution has a well-defined
S . average energy drop, which is near the cutoff betwelep 2
FIG. 6. The probability distribution for the duration d@8&) and &, for the systems shown here. The slight deviation
energy-drop rearrangement events dbi T1 events, for a 144- g5 hower-law behavior for smal\E was absent in the
bubble system atp=1 driven aty=10 °. Note that the typical earlier simulationg13], which did not exclude two-bubble
duration of T1 events is significantly longer than that of energy events, and which had a different roundoff error. Also, as
drops.(c) Correlation pIot_of the fraction of bubbles involved in an seen earlief13], the two largest systems, with 324 and 900
energy drop vs the duration of the energy drop. bubbles, respectively, have nearly identical distributions.
This has two important implications; namely, that the sharp
evident from the duration distribution for energy drops, Fig.cutoff of the power-law distribution is not a finite-size effect,
6(a), that most energy drops occur over a relatively shortand that the system does not exhibit self-organized critical-
strain scale. In units of time, the longest events are compaity.
rable to a hundred times the characteristic time scale in the The presence of a characteristic energy-drop size can be
problem (rg=1 in our simulations As shown in Fig. 6c),  corroborated by examining the number of bubbles that par-
there is a good correlation between the number of bubbleficipate in rearrangements for the same set of runs, which is
that change overlapping neighbors and the duration of thgiven in the middle plot, Fig. (b). This quantity has not
event; the more bubbles involved in the event, the longer ibeen studied previously within the bubble model. We plot
lasts. The distribution fof 1 events, shown in Fig.(6), has  the probability distributiorP(N) of the number of bubbleN
a qualitatively similar shape to the distribution of energy-that change overlapping neighbors during a rearrangement.
drop events, but exhibits a slightly more rapid decrease foThe distribution decreases monotonically with a sharp cutoff
both fast and slow events. However, the scale on whith at the large-event end. This indicates that most of the rear-
events occur is an order of magnitude larger than the charangements are local and involve only a few bubbles. Figure
acteristic duration of the energy drops. By examining the7(b) shows that as the system size increases, the largest
bubble motions we see that the largest energy drops are asvents represent a smaller fraction of the total number of
sociated with manyT'l events, but the difference in strain bubbles. Indeed, the tail of the distribution extends to smaller
scales makes it difficult to demonstrate an exact correlatiomnd smaller values dfl/N,, with no signs of saturation as
between the number of overlap changes and the number dfe system siz&\,,,, increases, indicating diminishing finite
T1’s. In counting thel'1 events, we include only events that size effects.

NMNow o1 L
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In short, all of our measurements a=1.0 and y

1 Wﬁ 10° =102 indicate that the rearrangement events are localized

10" . and that there is no self-organized criticality. This agrees

P(AE) with observations of rearrangements in both monolayer and
bulk foams.

B. Shear rate dependence

Now that size effects have been ruled out for dry foams,
we may examine the influence of shearing the sample at
different rates. Experiments by Gopal and Durig] on
three-dimensional foams show a marked change in the char-
acter of the flow with increasing shear rate. At low shear
rates, the flow is characterized by intermittent, jerky rear-
rangement events occurring at a rate proportional to the
strain rate. As the shear rate increases, so that the inverse
shear rate becomes comparable to the duration of a rear-

PMN)

2P . rangement event, the flow becomes smoother and laminar,
sl ° aB with all the bubbles gradually rearranging all the time. This

’ was attributed to a dominance of viscous forces over surface

s 1} ¢ $ tension forces when the strain rate exceeds the yield strain
divided by the duration of a rearrangement event. In movies

05 - of our simulation runs, we also observe a crossover from
0 i , " o o intermittent, jerky rearrangements to smooth laminar flow.

10 100 1000 Similar smoothing has also been seen in stress vs. strain at

Now increasing shear rates for the mean-field version of bubble

_ dynamics[13]. This raises the question of how the statistics
FIG. 7. Effect of system size at=1.0 andy=10 3. (a) Prob-  of rearrangement events change with shear rate. Specifically,
ability density distribution of energy dropSE scaled byE,, the  how is the “smoothing out” of the flow reflected in the
average energy per bubble for each run. There is a power-law restatistics at high rates, and is there a quasistatic limit at low
gion (the straight line has a slope 6f0.7) followed by a sharp  shear strain rates, in which rearrangement behavior is inde-
cutoff. The cutoff depends only weakly on the system size andyendent of strain rate? Earlier numerical studies by Bolton
converges for the larger systents) Probability distribution of the 31 \Weairg10] were restricted, by construction, to the qua-
number of bubbles that change overlapping neighbors during a resjstatic limit. Okuzono and Kawasal8] examined nonzero
arrangement. The tails of the distribution extend to smaller fraction§hear rates, but focused only on establishing the low shear-
of the total number of bubbles in the system as the system SiZFate limit. Recently, Jiang and co-workers found a strong

increases, showing that the events are spatially localizgdEvent dependence of th&€1 event count on shear raft@4]. They
count forT1 events(solid circles and energy droptpen squares found that the number of 1 events per bubble per strain,

Error bars forS(T1) in this and subsequent figures represent the . . . .
variations found in independent rutet least three, with the excep- S(T1), decreases sharply with strain rate with no evidence of

tion of the 900-bubble system for which only two runs were carried® quasistatic limit. . .
out with the same parameters but different initial conditions. QU results for rearrangement behavior vs strain rate are

Where no error bar is indicated the variation is smaller than the siz&0llected in Fig. 8 for a 144-bubble systemdt1.0. The

of the symbol. The number of energy drops per bubble decreases &P plot for the probability distribution of energy drops indi-
the system size increases, reaching the same value for the 32gates that there is no gross chang®{AE) with shear rate,
bubble and 900-bubble systems. There are, however, fibree-  €ven though our movies show a smoothing with less frequent
arrangement events per bubble at the larger system size. energy drops. However, there is some suppression of small
energy drops with an accompanying increase at large energy
n(;Erops, as reflected in a somewhat smaller power-law expo-
nent and larger cutoff at high values AfE/E,. It is not
apparent fronP(AE) vs AE/E,, but we find that the aver-
%ge energy dropAE) and the average energy per bubBle

We next look at the system-size dependence of eve
counts,S(T1) andS(AE), for the number off 1 events and
energy drops per bubble per unit strain. This is shown in th

bottom plolt, Fig. Tc), for the same runs as in, Figs(.a?_anq both increase with shear rate, and thAE) increases more
7(b). We find thatS(AE) decreases very slightly with in- 5 iq1 The reason whi, increases with shear rate is, of

creasing system size, but saturates for the largest systems, rse, that viscous forces become more important than elas-
The results forS(T1) show a stronger system-size depen-iic forces and lead to increasing deformatiéor in our
dence, increasing slightly withi, . This could be due to  model, overlapsof bubbles. The net result is that there are
the fact that bubbles on the top and bottom boundaries of thgawer, relatively larger, rearrangements at high strain rates.
system are fixed, which lowers the number of possible The tendency that small events are suppressed with in-
events per bubble. As the system size grows, the boundamteasing shear rates is also borne out by the distribution of
bubbles represent a smaller fraction of the system so ththe number of bubbles that change neighbors during an en-
event count increases towards its bulk value. ergy drop, as shown in Fig(i®. Note that unlike the previ-
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strain the viscous term dominates and the elastic forces are
not strong enough to prevent clumping of bubbles. This is
actually an artifact of the assumption that only overlapping
bubbles interact viscously; such clumping does not occur
until much higher strain rates in the mean-field version of
dynamics. Another reason why we do not study shear rates
higher than unity is because we do not allow bubble breakup

under flow(recall thaty is the capillary number

The gradual smoothing with increasing shear rate is most
apparent in Fig. &), where we see that the event counts of
T1 events and energy drops both decrease with increasing
strain rate. For th@1 events, the decrease is slight, and is
primarily due to the fact that the event duration becomes
even longer. The decrease is more dramatic for the energy
drop events. With increasing strain rate, the average energy
drop increases and the rate of energy drops decreases.

Let us now reexamine the behavior of all quantities in
Fig. 8, focusing on behavior at low shear strain rates. Note
. that all quantities appear to approach a reasonably well-

defined "“quasistatic” limit insensitive to the value ty[ We

o thus have the following picture. For smal, the time be-
01 N tween rearrangements is typically much longer than the du-
e TI ° ration of a rearrangement, implying there is adequate time
0.01 | a for the system to relax stress. As the shear rate increases,
L L L L L L bubbles are constantly in motion and cannot fully rearrange
107 10t 10% 107 1071 into local-minimum-energy configurations. Therefore, the
v viscous interactions dominate, and the system flows like an

FIG. 8. Effect of shear rate for a 144-bubble systenpat1.0.  ordinary liquid.
(a) There is no systematic change in the power-law region of the
probability distribution of energy drops. The cutoff moves towards

larger event sizes agincreases(b) A stronger trend is apparent in

the probability distribution of rearranging bybbles. Adncreases, In the bubble model at higher strain rates, the behavior
the distribution flattens. For the highest rajes 0.1, the distribu- 35 seen to depend on the form of dissipation: clumping for

tion is fairly flat, suggesting that no one event size is dominant anqocal dissipation, Eq(5), as opposed to no clumping for
the largest events are of the order of the system s@eBoth the mean-field dissipation, E@4). In this section we will inves-

event counts fol 1 events and energy drops decrease as the syst L . .
) gy drop 3 5 sYS erﬁ'gate whether dissipation affects the low-strain-rate behavior
is sheared faster. THEL event counts ay=10 ° and 10  are the

same within error. Note that a well-defined quasistatic limit is ap-aS Well. If there truly exists a quasistatic limit 3s-0, as
suggested by the plots in the previous section, then the form

of dissipation should have no influence. This need not occur,
ous curvesP(N) is plotted here on a linear scale. Two sys-since once a rearrangement starts it proceeds with finite
tematic trends emerge with increasiiygthere are relatively speed according to dynamics set by a competition between
fewer small events, i.e.P(N) decreases significantly at surface tension and dissipation forces. For example, it is con-
small N/N,,,, and the tail extends to slightly higher ceivable that the mean-field dynamics might discourage the

N/Npyp. For y=10"1 the distribution is fairly flat, suggest- mushrooming of a tiny shift in bubble position into a large
ing that no one event size is dominant and there are numefvalanche, whereas local dynamics might not. Another im-
ous large events of the order of the system size. This sugortant issue is that differences in mean-field vs local dissi-
gests that at this shear rate the system no longer relaxggition could be relevant to true physical differences between
stress by intermittent rearrangements, but by continuoubulk foams and Langmuir monolayers at an air/water inter-
flow, as confirmed by our movies of the ruf]. The trend face. For three-dimensional foams, the shear is transmitted
in P(N) is seen in larger systems as well. For the 900-bubbl¢hrough the sample via bubble-bubble interactions, so the
system we also find that as the shear rate increases frodissipation might be better captured by the local dissipation
107 ° to 10 3, the distribution flattens and extends to highermodel. In contrast, for two-dimensional Langmuir mono-
values ofN. The average number of rearranging bonds in-layer foams the subphase imposes shear on the monolayers,
creases with shear rate, consistent with the picture of mangnd the dissipation might therefore be closer to that calcu-
bubbles in motion as the system becomes more liquidlikelated with the mean-field model.

We cannot, however, probe the system at very high shear To investigate the influence of mean-field vs local dynam-
rates. Data above a shear rate of about 1 cannot be trustéz$, we can simply compare avalanche statistics. This is done
because of the nature of the model used. At high rates dh Fig. 9 for 144-bubble systems at four different area frac-

C. Mean-field vs local dissipation

proached ag—0.
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where the effect of strain rate aly to set the rate of rear-

— N = 3
N, =144,¢=10 rangements.

10" b
P(AE) 0 | ‘ D. Gas area fraction
10°F oeal \.i:f?-.: Finally, we turn to the issue of how the elastic character
- —— mean field Vi of a foam disappears with increasing liquid content, and the
10° 1(;‘4 . 1(;‘2 . 1' ' 1(')2 possibility of critical behavior at the melting transition. The
AE/E principal signature of the melting, or rigidity-loss, transition

is that the shear modul@a= Iimtﬂma(t)/y vanishes and the

foam can no longer support a nonzero shear stress without
flowing. In two-dimensional systems, this happens at a criti-
cal gas fraction corresponding to that of randomly packed
disks, ¢.~0.84. This has been seen in several different
simulations, where the gas fraction was tuned to within 0.05
of the transitio9—-11] and where it was tuned through, and
N/Nb“b even below, the transitiofi2,13. Other signatures of melt-

ing are that the osmotic pressure vanishes as a power-law

P(N)

: S 2113 f;‘;ﬁj{ﬁﬁjln field [12,13,14 the coordination number decreases towards about
L5 F 't ¢ 4 as a power-lay9-13,21, and that the time scale for stress

s 1 _ ¢ d ¢ $ relaxation following an applied step-strain_appears tp (_jiverge
i e [12,13. Here we look for signs of melting in the statistics of

0.5 F avalanches during slow, quasistatic flow. Within our model,

A A A A an increase in liquid content causes a decrease in the average
s Toss oo oes 1 overlap between neighboring bubbles. This in turn produces
o a decrease in the average elastic energy of the sysem,

and sets the scale for the average energy didbR) per
FIG. 9. Effect of gas area fraction and the form of viscousegrrangement. It therefore should also decrease at lower gas
dissipation for a 144-bubble system shearegiatl0 3. The prob-  fractions b.
ability distribution of both(a) energy drops, andb) number of The energy drop and size statistics of rearrangement
bubbles changing overlapping neighbors during an event, are givegy ents for increasingly wet foams were shown already in Fig.
at four area fractionsp=1.0, 0.95, 0.90, and 0.85. Heavy and light 9, but were discussed only in the context of mean-field vs

curves are for mean-field and local versions of dissipative dynamy, .| jissinative dynamics. A clear trend emerges when we
ics, respectively. Note that the dynamics do not influence the be-

havior but that the events become larger as the gas fraction angan;lneFEhzﬁwE dependenctehstpetﬁlflcally. Inl the gorr)] plpt Fflg.
proaches the melting pointp,~0.84. Part(c) shows the event (@) for P(AE), we see that the power-law behavior for

counts forT1 events and energy drops; these are insensitive to botﬁmaII events does not change, but that the exponential cut-off
gas area fraction and type of dynamics. moves towards larger values AfE/E,, as ¢— ¢.. Though

both{AE) andE, decrease towards zero, the latter evidently

] vanishes more rapidly. This results in a broader distribution
tions, all sheared ag=10"3. The top plot shows results for of event sizes near the melting transition; as the system be-
the energy-drop distributionP(AE), with light (heavy  comes more liquid, large events are more prevalent. The
curves for localmean-field dissipation. There is no signifi- probability distributionP(N) for the numbers of bubbles in-
cant difference seen between the two choices of dissipativeolved in rearrangement events is shown in Figp) 9lt dis-
dynamics. This is also true of the spatial extent of the rearplays similar trends as a function a@f, but not as pro-
rangements, as seen in the middle plot for the probabilitthounced as ifP(AE). Namely, the power law for smal is
distribution P(N) of rearranging bubbles. The bottom plot unaffected by¢, but the exponential cutoff moves towards
for the rate of energy-drop anll events also shows little slightly larger events ag— ¢.. Thus, although the scale of
significant difference between mean-field and local dynamenergy drops increases dramatically, the number of broken
ics. The only distinction is a slightly greater rate oi bonds only increases marginally. Note, however, that the
events in the mean-field case. This reflects the difference ifargest events include almost all the bubbles in the system;
duration ofT1 events within the two models; we find tiEt ~ thus, the relatively weak dependenceR{lN) on ¢ could be
events tend to last longer within the local dissipation modela finite-size effect in thesdl, ,= 144 systems, as we will
Since we do not countl events that last longer than a strain show below.
of 2, we count fewer events within the local model than the The behavior ofS, the number of energy drops afd
mean-field version. Thus the differencesSfirl) may sim- events per bubble per strain, is shown in Fi¢c)9As the
ply be due to our method of countingl events. Taken system becomes wetter, there is no noticeable change in the
together, the three plots in Fig. 9 encourage us to believe thavent numbelS(AE) for energy drops. In contrast, if our
the rearrangement dynamics predicted by the model are ralefinition of nearest neighbors only includes overlapping
bust against details of the dissipation. They also provide furbubbles, we find thaB(T1) decreases ag decreases. This
ther evidence for the existence of a true quasistatic limitruns counter to expectations—bubbles in a wet foam should
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have more freedom to move and rearrange because the en-
ergy barrier between rearrangements is lower and the yield
strain is smaller. The apparent drop arises because the bubble
coordination number is much higher in a dry foaraughly

6) than in a wet foanfroughly 4. As a result there are more
overlapping neighbors for each bubble in a dry foam, and
more possibilities for the occurrence df events. In the wet
foam, however, there are mafyl events that do not satisfy

the stringent starting or ending configurations because neigh-
boring bubbles do not overlap. It is therefore appropriate in
wet foams to modify the criterion for neighbors fiq—r;| 10 -
<a(R;+R;), where the proximity coefficiena is taken as 1
1/¢p. WhenT1's are computed with this definition, we find P(N)
no significant dependence on area fraction.

The fact that the power-law region of the energy-drop 107 |
distribution is more extended at lower area fractions suggests o
the possibility of a critical point as the close-packing density, 10? 2
¢, is approached from above. This would imply a pure bub
power-law distributionP(AE) for the energy drops ab., 2F
which would presumably be accompanied by a growing cor-
relation length, as well as the growing relaxation time ob- ' i $
served previously in Ref§12,13. Note, however, that the s 1}
distribution of the number of bubbles involved in a rear- :
rangementP(N), does not depend very strongly a@h for 0.5 ¢
the 144-bubble systems of Fig. 9; furthermore, the cut-off to .
power-law behavior is always present, no matter how closely 10 100 1000
¢. is approached. This raises the question of whether finite N
system-size effects are more important at valuegb afear
¢, (recall from Fig. 7 that there were no significant system-  FIG. 10. Effect of system size ap=0.85 andy=10"2. (a)
size effects neapp=1). To examine this, we have plotted the There is no change in the power-law region of the probability den-
dependence oP(AE),(N) andSon system size in Fig. 10. sity distribution compared with Fig.(6). However, the cutoff in-

We indeed find a strong system-size dependend(ikE) creases and there is no convergence for the largest system(kjzes.
at ¢=0.85 just above the melting transition, with no satura-Even at the largest system sizes, the largest events involve a sig-
tion at the largest size studi¢l00 bubbles This is consis- nificant fraction of the bubbles in the system, indicating that the
tent with the existence of a long correlation length. events are much more spatially extended thagatl.. (c) As in

The distribution of the number of bubbles per energyFi9- 7€), the number ofT1 events and energy drops show the
drop, P(N) also shows signs of criticality. Recall from Fig. opposne trend. The event count for energy drops |nd|catg that flnlte
7(b) that at= 1, the tail of P(N) was cut off at smaller and size effects are more pronounced at this lower area fraction. Unlike

' . . . the saturation seen in Fig(c}, the event number continues to drop
smaller values ofN/Ny,, with increasing system size @t as the system size increases
=1. This was consistent with a short correlation length, '
characteristic of localized rearrangement events. @t _ ) o )
=0.85, the behavior with increasifd,,;, is quite different, P(AE) with the probabilty distribution of bubbles changing
as shown in Fig. 1®). The distribution falls off slightty ~neighborsP(N) shows that the size of an energy drop cor-
more rapidly withN/N,,;, at larger system size@robably relates well with _the num_be_r of bubbles involved in a rear-
becausap=0.85 still lies abovep,), but the largest events rangemen(se_e Fig. 4 This 1S valuable_ because _the energy
in the system still involve the same fractidiiN,,,,~0.75 of drop—dllst.nbutlon has been W|dely_ studied theoretically, but is
bubbles, indicating a correlation length that is comparable tyery difficult to measure experimentally. The number of
the largest system size studié®D bubble diameters acrgss bPubbles involved in rearrangements, however, can be probed

The event counts for energy drops ahtl events for the ~With multiple light = scattering techniques on three-
different system sizes ab=0.85 are shown in Fig. 16). d!mens!onal foamg5] and by direct visualization of two-
The behavior is not markedly different from that found for dimensional foam$§7]. A study of the rate of occurrence of
the drier foam. Recall, however, that we have adjusted oufoPological changesTl events provides a further link to
definition of aT1 event by changing the proximity coeffi- €XPeriments.

cient a with area fraction, so little can be expected to be !N general, our results agree with experiments on three-
learned from this measure. dimensional and two-dimensional foams. Despite its simplic-

ity, the bubble model appears to capture the main qualitative

features of a sheared foam remarkably well. For example, we

find that the size of rearrangement events is typically small at
We have reported the results of several different measurdew shear rates and at area fractions not too closg.toThis

of rearrangement event dynamics in a sheared foam. A comis in accord with experiments of Gopal and Durid, and

parison of the probability distribution of energy drops Dennin and Knoblef7], as well as simulation results of

VI. DISCUSSION
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Bolton and Weaird10] and Jiang and coworkefd4]. Our  absence of shear plus a term proportional to the shear rate. In
results do not agree with those of Okuzono and Kawasakiheir case, the event rate was nonzero in the absence of shear
[8], however, who found power-law distributions of rear- because of coarsening; we have neglected this effect in our
rangement events ai=1 in two dimensions. simulations. However, we do find that the rearrangement
The largest discrepancies between our results and those efent rate(the product ofS and the shear ratds simply
others lie in the statistics of 1 events. We find that the proportional to the shear rate at low shear rates. Thus, ex-
number of T1 events per bubble per unit strain is of order perimental results in both two and three dimensions contra-
unity and is generally insensitive to shear rate and gas aregict the simulation results of Jiareg al. [14], which find no
fraction. Kawasakiet al. [22] found similar resultsS(T1)  quasistatic limit, but agree with our findings.
=0.5 and no dependence on shear rate. In the Potts-model The form of dissipation used in the bubble model is a
simulations[14], however,S(T1) is unity at'y= 103 put  simple dynamic friction, which does not capture the hydro-
falls to about 0.01 afy=10"". dynamics of fluid flow in the plateau borders and films in a
The monolayer experimenid] yielded values o5(T1)  realistic way. However, our res_ults suggest that we may s_tiII
~0.15, nearly an order of magnitude lower than predicted by€ capturing the correct behavior at low shear rates. We find
our simulations. Dur|a|[]13] reported a number of rearrange- that the rearrangement event statistics are the same whether
ment events per bubble per unit strain for simulations of ave use mean-field or local dissipation at low shear rates.
900-bubble system ay= 105 that was comparable to the This suggests that_ the statistics are determined by elastic ef-
monolayer result, but he measured the number of energ cts r_ath_er than viscous ones at_ low shear rates, and that the
drops per bubble per unit strai§(AE), not theT1 event ehavior in that limit should be independent of the form of
count, S(T1). Note that our energy-drop event count, Viscous dissipation used.

S(AE), agrees well with Durian’s earlier resullt. Finally, our results as a function of gas area fraction im-
One might guess that the discrepancy between our me#&ly that there may be a critical point at the melting transition,
surement ofS(T1) and that of the monolayer experiment as the area fraction approaches the random close-packing
might lie in the method of analysis used to colirit events.  fraction from above. Previous studies showed that both the
Unlike the simulations, in which the number ®fL events shear modulus and yield stress vanish as power laws at the

can be computed from an analysis of bubble positions as melting transitior{10,12, and that the stress relaxation time
function of time, the number of1’s in the monolayer stud- appears to diverggl2]. Here, we have shown by finite-size
ies was determined by repeated viewing of videotapes of thetudies that there is also a correlation length, characterizing
experiments and counting of the events as the foam cellghe size of rearrangements, which grows as one approaches
reach their midpoint configuration. It seemed possible, thenthe melting transition. We also find that the distribution of
that the difference between the simulation and the eXperienergy drops appears to approach a pure power law in that
ment was the result of a systematic undercounting of thgmit.
number of the events. To check this possibility, the number The existence of a critical point at the melting transition
of T1's in a simulation run was determined by observationsemains to be tested experimentally. The vanishing of the
of the animated bubble motions. The number of eventgpear modulus and osmotic pressure at the transition has
missed in this unautomated counting was only 2% of the .., measured by Mason and Wé23] for monodisperse,
total. egisordered emulsions, and by Saint-Jalmes and Durian for
. : . .polydisperse gas-liquid foan|24]. However, these small-
;tnivﬁg; riﬁtetﬁemyitglz ?sltnrq;iLatl\(;\?hi"ligdtrfgeygl?jng?gi?\r iﬁxt’)h(z'émplitude—strai_n rhe_ologi.cal measurements could not test
model system is less than 0..2 which is consistent with th rr\rhether there 's a diverging length scalg for rearrangements
measured in three-dimensiona,l foams, that in the monolayz a steadily sheared system at the melting transition. On the
' dther hand, Gopal and Durids] have measured the size of

foams is closer_ to unity. Bubbles in monola_yer foz_ims Qar}earrangement events in a gas-liquid foam, but only at pack-
therefore sustain very large deformations without mducmqng fractions well above the melting transition. At lower

rearrangements. THel event count should be inversely pro- packing fractions close to the melting transition, the liquid

pprtiongl o the yie[d strain. Thl.JS' the ratio §(T1) in the . drains too quickly from the foam due to gravity to permit
simulation ©0S(T1) in the experiment should equal the ratio such measurements. Experiments under microgravity condi-

O.f th? i’.'eld ?‘g?"ﬂ n thet?xpe;]rlrpent ;[_0 (';he yleld strain in they; g should be able to resolve whether the melting transition
simulation. This is exactly what we find. is indeed a critical point.

One of our main results is that a quasistatic limit exists
within the bubble model. We find that the statistics of rear-
rangement events are independent of shear rate at low shear
rates. This agrees with the monolayer experimgngswhich

measuredTl event counts at two different shear ratés, We thank Narayanan Menon and lan K. Ono for many
=0.003 s* and 0.11 s*. Dennin and Knobler found no helpful discussions, and we thank Michael Dennin for per-
noticeable difference in th€1l event count, despite the fact forming the visual analysis of the numberDf events. This
that the shear rates studied differ by a factor of thirty. Inwork was supported by the National Science Foundation
addition, Gopal and Durian found that the event rate, namelyhrough Grant Nos. CHE-962409@®.J.L.), CHE-9708472
the number of rearrangement events per bubble per second.M.K.), and DMR-9623567D.J.D), as well as by NASA

in a three-dimensional foam is given by the event rate in theéhrough Grant No. NAG3-141€D.J.D).
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